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Abstract. This paper examines the tension between secrecy of autonomous ve-
hicles (AVs) algorithms and the need for transparency to safeguard consumer
interests. Observing AV developments from early government-funded prototypes
to breakthroughs in deep neural networks, it shows that increased algorithmic
complexity has limited the ability of the data processing’s assessment from a de-
veloper and a user perspectives. Ethical theories, applied in this paper, particu-
larly Act Utilitarianism and Ethical Egoism, provided theoretical foundation for
transparency claims of the public. Utilized Legal frameworks, including the Gen-
eral Data Protection Regulation (GDPR) in Europe and the California Consumer
Privacy Act (CCPA) in California, emphasized existing gap between legal re-
quirements and characteristics of deployed algorithms worldwide. The paper
concludes by emphasizing that a new approach on AV algorithms transparency
has to be adopted. One that would preserve the technical secrecy essential for
security of intellectual property and cybersecurity posture, while guaranteeing
required transparency to ensure meaningful consumer safety and trust.
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1 Introduction

AV (autonomous vehicle) is characterized by being equipped with technologies that
partly or fully replace the need for a human operator. Already more than 50% of pro-
duced vehicles in major East Asian markets incorporate autonomous driving technolo-
gies, and projections indicate similar or higher adoption rates in other major markets,
such as the US, and West and North Europe [1].

Despite this increase in production and demand, the general public has limited
awareness of specific technologies and algorithms that power these vehicles. Surveys
reveal that substantial number of people primarily rely on marketing claims rather than
objective knowledge about AV’s technologies [2]. This state of affairs leads to danger-
ous technological over-reliance and overestimation of safety. Moreover, major AV de-
velopers rarely release important details on how their vehicles make critical decisions,
especially in complex and dangerous real-world driving scenarios that involve life-and-
death dilemmas [3].

From the developer’s perspective, such secrecy is understandable. To guard propri-
etary technology from malicious hacking or theft, companies refrain from disclosing
their algorithms’ or decision-making logic [4]. Yet, withholding this knowledge leaves
consumers with undermined personal safety. Consumers become unaware of the pre-
cise risk-benefit trade-offs that they make while deciding to acquire or rent an AV.

To address this conflict of interests, the paper explores the balance between algorith-
mic transparency in autonomous vehicles, focusing on both the developer’s security
and customer safety. Subsequent sections outline the development of autonomous driv-
ing technology to better understand the evolution of related security dangers and high-
light the industry’s shift towards complex artificial intelligence algorithms that are in
the center of most public safety concerns of today. Next, the identified problematic
areas will be examined through ethical theories and legal frameworks to offer an unbi-
ased assessment of the justification behind the industry’s current approach to the dis-
cussed issues.

2 Autonomous vehicles of the past (1960-2000s)

2.1  First appearance and evolution of the technology

The concept of AVs evolved alongside advances in computer science. During the
1960s, first in its kind projects such as Stanford’s “Lunar Vehicle Remote Control” and
NASA’s “Roving Vehicle Motion Control” showcased never seen before autonomy
features like line tracking and surface identification [5], [6]. Since the available hard-
ware at that time was computationally insufficient for real-world applications in every-
day driving scenarios, these projects focused exclusively on highly controlled or pre-
dictable environments such as research labs or obstacle-free surroundings.

Until the mid-1980s, AV research was mostly government-driven, with agencies
such as NASA and DARPA supporting projects for strategic benefits [7]. As sensing
hardware (machine-vision cameras, radar, and infrared sensors) improved, possibilities
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for real-world, civilian applications expanded. The turning point came in 1987 with the
PROMETHEUS project (Programme for a European Traffic of Highest Efficiency and
Unprecedented Safety) [8]. This initiative attracted major automakers like Mercedes-
Benz, BMW, and Fiat, which recognized AV technology’s commercial potential.
PROMETHEUS culminated in a self-driving vehicle capable of intercity travel with
minimal human intervention, effectively resolving the gap between research prototypes
and consumer-ready applications.

Building on breakthroughs from such initiatives, auto manufacturers began incorpo-
rating computer systems with their partial autonomy features into commercial cars by
the 1990s and early 2000s [9]. Capabilities like adaptive cruise control, lane-keeping
assistance, and early collision-avoidance systems were sold as safety features rather
than self-driving technology. Consumers generally viewed these incremental enhance-
ments with optimism [10]. Nonetheless, as vehicles became more computerized, cyber-
security threats started to be a frequent discussion [11].

2.2 Related security and privacy issues

Since vehicles started to rely on computer systems for brakes, engines, and steering,
black-hat hackers gained a possibility to identify and exploit potential security and data
breaches [12]. Conferences like ESCAR (Embedded Security in Cars) appeared in the
early 2000s to address these threats for the first time [13]. At such conferences, many
automakers faced criticism for relying only on a “security through obscurity” stance,
limiting public information to safeguard the systems [14]. This contradicted well estab-
lished cybersecurity principles like Kerckhoffs’s principle, which states that systems
should remain robust even if their internal structure is known [15].

Though experts raised concerns, manufacturers continued to classify information re-
garding proprietary algorithms for intellectual property reasons while integrating better
cybersecurity practices such as cryptography and secure software development frame-
work (SSDF) [16]. In most instances, customers were unconcerned by the implied se-
crecy since the autonomous features were easily understood and predictable in terms of
logic and expected behavior (e.g., adaptive cruise control - maintains a distance of 4
meters to the next vehicle; lane tracking - adjusts the steering angle to keep the vehicle
in the center of a line). This combination of user-friendly communication and consistent
performance effectively maintained consumer trust without a need for disclosure of the
algorithms’ internal architecture or logic [17].

3 Autonomous vehicles of today (2010-2020s)

3.1 New range of capabilities

While automakers and researchers were incorporating more advanced features with
higher levels of autonomy, confusion about the varying degrees of driver assistance
started to grow. For this reason, the Society of Automotive Engineers (SAE) published
the J3016 standard in 2014. This classification outlines six autonomy levels, from 0 (no
automation) to 5 (full automation) [18]. Most commercially available models at the
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time fell under Levels 02, but SAE included higher levels to anticipate rapid techno-
logical progress.

Table 1. SAE J3016 Levels of Driving Automation

Level Name Driver Role
0 No Automation Full control
1 Driver Assistance Driver must remain fully engaged
2 Partial Automation Driver monitors and may intervene
3 Conditional Automation Must be ready to take control
4 High Automation No intervention in defined scenarios
5 Full Automation No human intervention required

That progress indeed happened and was mainly driven by breakthroughs in artificial
intelligence, characterized by advances in deep neural networks (DNNs) [19]. DNNs
allowed for improvement in computer vision tasks by learning from data rather than
relying solely on human programming [20]. This approach proved to be ideal for un-
predictable road conditions that AVs confront. Consequentially, many researchers and
companies envisioned possibilities for self-driving cars surpassing the limitations of
earlier rule-based algorithms [21].

Tesla’s Model S, introduced with self-driving features in 2014, was among the first
widely accessible Level 2 vehicles employing neural networks for tasks like lane
changes and highway merges. Its system architecture illustrated the real-world potential
of DNN approach for driving [22]. Using that, the car’s internal algorithm acquired its
rules from large-scale data inputs (geolocation, camera images, biometrics and behav-
ioral patterns of drivers and passengers, and etc.), refining its performance over time
until a point that was considered as optimum [23].

Following Tesla’s lead, companies like Uber, Waymo, and Nvidia adopted similar
data-driven methods. Nvidia’s specialized Al platforms significantly advanced AVs’
real-time decision-making, enabling vehicles to navigate complex pedestrian-rich en-
vironments [24]. Waymo launched driverless taxi services in cities such as Phoenix and
Arizona, pushing towards final Level 5 of autonomy [25]. However, despite these im-
pressive achievements, the growing reliance on DNN created a significant cybersecu-
rity threat, the “black-box™ system characterized by hardly assessable internal logic
[26].

3.2  Related security and privacy issues

DNNs often mask how decisions are reached, offering visibility only into inputs and
outputs. Therefore, even developers may struggle to describe if a vehicle stops at a red
light because it truly understands traffic signals or because it associates any red color’s
source with an instant stop response [27]. Industry leaders overcame this difficulty with
extensive simulation-based testing. By exposing AVs’ algorithms to vast numbers of
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scenarios inside virtual environments, stakeholders can verify safety outcomes without
delving deeply into the algorithm [24].

While this approach addresses engineering risks, it leaves customers uncertain about
how AVs will behave in novel situations. The previous reliance on “security through
obscurity” is inadequate here. Customers have no more clear guidelines to rely on to
understand a detailed picture of how the data collected real-time from their driving ex-
perience (geolocation, camera images, biometrics, behavioral patterns, etc.) is being
processed by an AV’s algorithm [23, 27]. Moreover, customers lack a clear reference
standard for the evaluation of this algorithm’s outputs—namely, the AV’s driving be-
havior—and thus cannot readily determine which actions are normal versus malfunc-
tioning [27].

With growing public distrust of AV technology, which has risen from 54% to 66%
in the last three years, the number of protests and acts of activism requesting more
transparency and better governance of the technology has climbed as well [28, 29].
Examples of these protests range from highly violent, with cases where AVs are inten-
tionally damaged and turned into non-repairable vehicles, to less violent that intend to
showcase security flaws without causing significant damage. The “Week of Cone* or-
ganized by SSR (Safe Street Rebels) in 2024 in California, is an example of a less
violent protest, with the main tactic being to showcase that AVs algorithms cannot han-
dle unpredictable situations on roads, such as the appearance of a traffic cone in mini-
mal distance to a camera sensor [30].

Given the preceding discussion, It becomes increasingly clear that preserving se-
crecy can no longer address security threats and safety issues around modern AV tech-
nology. Therefore, ethical, and legal frameworks, which would be introduced in the
next section, should be explored to find the balance between proprietary algorithms’
transparency and consumer safety.

4 Theoretical Framework

4.1 Ethical Theories

Act Utilitarianism

. To be able to assess the transparency-security tradeoff from the perspective of how it
affects large and diverse groups of people, we would need to apply Act Utilitarianism.
This ethical theory was developed by Jeremy Bentham in the late 18th century with the
purpose of making the assessment of an act’s morality straightforward and logical.
Therefore, the utilitarian logic constitutes that an act is morally permissible if the con-
sequences that result from it produce the greatest amount of good for the greatest num-
ber of people affected by it [31].

Ethical Egoism

. To inspect how decisions regarding the secrecy of AV algorithms might be evaluated
if guided by self-interest, the Ethical Egoism theory is particularly useful. Shaped by
Ayn Rand in the 20th century, Ethical Egoism maintains that an act is morally right if
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it servs self-interests of the agent itself, without consideration of its impact on others.
Accordingly, it judges actions primarily by how they benefit the individual or entity in
the act, rather than by broader social outcomes or universal duties [32].

4.2  Legal Frameworks

European Legislation - General Data Protection Regulation (GDPR)

. The General Data Protection Regulation (GDPR), introduced in 2018, is currently the
main legal framework governing how personal data is collected, processed, stored, and
distributed in the European Union [33]. It automatically applies to any entity that works
with data within the EU’s borders or to any entity globally if that entity works with the
EU’s citizens’ data. This framework is an important legal instrument for the assessment
of the discussed AV’s algorithms, since the collection and processing of data is the
central part of these algorithms’ operations.

US Legislation - California Consumer Privacy Act (CCPA)

. Across the United States, regulations regarding the data privacy significantly vary
depending on the particular state. The California Consumer Privacy Act (CCPA), which
is active from 2018 and only under California state’s jurisdiction, is one of the most
comprehensive and up to date (amended in 2023) examples of legislation frameworks
that focuses on safeguarding personal information, disclosing data practices, and data
ownership’s rights [34]. When applied to practices of AVs’ development and deploy-
ment, it may provide important insights how most modern attempts of data-focused
regulations address introduced issues.

5 Analysis

5.1 Ethical Theories

Act Utilitarianism

. As previously stated, the current approach of “security through obscurity” in the AV
industry caused a significant level of public distrust and civil disobedience [28, 29, 30].
Conversely, there is no known public campaign that would have requested the preser-
vation of the current state of AV algorithms’ transparency. Therefore, by applying Act
Utilitarianism that evaluates an act as morally permissible based on its causation of
greatest amount of good for the greatest amount of people, we may conclude that the
act should be considered as unethical, since the developers have failed to establish the
transparency level that was requested by the public [31].

Ethical Egoism

. Under Ethical Egoism, developers’ decisions to keep AV algorithms classified appear
morally justifiable from a self-interests perspective. Secrecy protects intellectual prop-
erty and preserves a competitive advantage [4]. However, these gains are likely to be
short-lived. As consumer mistrust grows, AV developer companies risk losing their
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market value. As an illustration, Tesla’s stock price reportedly declined by 36% over
the past three years, while the number of people who are afraid of AV technologies
increased by more than 10% [28]. Thus, while Ethical Egoism supports secrecy of AV
algorithms and evaluates it as ethical in the short term, it may fail to justify the devel-
opers’ decisions if potential long-term consequences that prevent the satisfaction of
self-interest in financial and developmental growth are taken into consideration [32].

5.2  Legal Frameworks

European Legislation - General Data Protection Regulation (GDPR)

. The GDPR states that any personal data processing must be both minimal and trans-
parent, as specified by Article 5(1)(c), which indicates that personal data “shall be ad-
equate, relevant and limited to what is necessary.” Recital 39 also highlights that “the
principle of transparency requires that any information and communication relating to
the processing of those personal data be easily accessible and easy to understand” [33].
However, these requirements appear conflicting with current practices in AV develop-
ment, where much of the decision-making logic is under the curtain, and “black-box”
algorithms leave consumers and even developers unclear about how specifically col-
lected data informs critical driving decisions [23, 27].

US Legislation - California Consumer Privacy Act (CCPA)

. The CCPA in Section 7002 requires that “the business’s collection, use, retention,
and/or sharing of a consumer’s personal information shall be reasonably necessary and
proportionate to achieve the purpose(s) for which it was collected or processed” [34].
Yet the reliance on highly effective but highly unassessable DNN algorithms in AVs
poses a direct confrontation to that principle, since it is unclear whether all of the parts
of large-scale real-time data collection and processing are necessary for efficient auto-
mated decision-making [23, 27]. Furthermore, Section 7003 states that “disclosures and
communications to consumers shall be easy to read and understandable to consumers”
[34]. However, as we already concluded while applying the GDPR framework, trans-
parency requirements, because of the “black-box” nature of DNN algorithms, could not
be met at the current stage of the technology development [27].

6 Conclusion

Throughout the research, the issues of the trade-off between AV developers’ security
and customers safety, based on the transparency of the algorithms, were illuminated
from different ethical and legal perspectives. Thus, it was concluded that the Act Utili-
tarian Ethics would consider the current state of the algorithms’ transparency as uneth-
ical, since it raises negative reactions and public protests. The application of the Ethical
Egoism showcased that conclusions could be two-sided based on the short- or long-
term evaluation of keeping the algorithms classified. Short-term outcomes, under the
Ethical Egoism, prove the secrecy of the algorithms as ethical since they serve self-
interests of the developers to keep a competitive advantage. However, the long-term
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consequences of the classified approach are proving it to be unethical since the devel-
opers are likely to lose profitability with time, as public distrust in the technology in-
creases. The application of two legal frameworks (GDPR, CPPA) demonstrated that
contradictions exist between the current transparency state of the algorithms and legal
requirements. Both legislations emphasized that there are two main problematic areas.
The first is the absence of clear proof from the developers’ side that every collected and
processed data type is necessary for efficient operation of the algorithms. The second
is the developers’ inability to clearly describe processing logic of used DNNs algo-
rithms, because of their “black-box’ nature.

Therefore, it is clear that a new approach on security and transparency of DNN-based
AV algorithms should be implied. It has to meet two requirements to resolve the de-
scribed conflict of interests. Firstly, the approach has to protect the developers from
intellectual property theft as well as from over-exposure of critical information leading
to security breaches. Secondly, public concerns and legal requirements should be ad-
dressed in the new approach by a guarantee of customers’ ability to independently as-
sess AVs’ safety in terms of how collected data affects the final decisions of the algo-
rithms.

Funding: This research received no external funding.
Clinical trial number: not applicable.
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